

## Solar PV Electrical Inspection Checklist

## **Required Documentation**

- Manufacturer specifications for:
  - solar panel
  - o inverter
  - o module
  - o optimizer (if used)
- Manufacturer specifications and verification for racking system grounding and bonding
- Verification that all equipment:
  - o installed is safety listed from a certified national testing laboratory
  - o is listed for use with the desired PV application
- Verification of sizing for installed electrical wiring/equipment via 1-line diagram with calculations
- Existing roof layout (prior to solar installation)
- Proposed roof layout of solar installation
  - Pictures of PV wiring both in attic and on roof after installation (to be available at time of inspection)

# The 2020 National Electrical Code sections are noted below with section numbers only throughout the document

### **PV System**

- Is the PV system utility-interactive, stand alone or multimode? 690.1/690.10
- Is all equipment listed for PV application? 690.4
- Is the system grounded, ungrounded or functionally grounded? 690.2/690.41
- Has DC Ground-Fault protection been adequately provided and properly labeled? 690.41(B)
- What is the maximum PV system voltage? 690.7
- Is all listed equipment rated for the maximum voltage? 690.7
- Determine the maximum circuit current for the PV source and output circuit; inverter output circuit; inverter input circuit; DC to DC converter output (refer to inverter documentation) 690.8

# Please verify installations meet 2020 NEC

## System Grounding

- Is all exposed non-current carrying metal parts of the PV system grounded?
  690.43/690.47
- Are the mounting structures or systems used for equipment grounding? 690.43
- Are the interconnecting devices used for equipment grounding listed and identified?
  690.43

- Is the EGC properly sized and protected if exposed, not being smaller than a #6 690.45/690.46/690.50/250.122/250.120(C)
- Has the grounding electrode system been installed? 690.47
- If both AC and DC are present, has the DC G.E.S been bonded to the AC G.E.S? 690.47(A)
- If a Supply Side system, is the AC disconnect properly grounded and bonded? 250.25

## Wiring Methods and Disconnecting Means

- Are the conductor and cable ampacities determined at 125% before adjustment factors? 690.8(B)
- How are the PV Source and Output Circuit protected from overcurrent? 690.9
- Do AC and DC OCPD's have the appropriate voltage, current and interrupting ratings? 690.9
- Has arc fault protection been provided for DC source and/or output circuits? 690.11
- With rapid shutdown required, how is it accomplished and identified?
  690.12/690.56(C)
- Is the PV disconnect permanently marked and installed in a readily accessible location? 690.13
- If required, has the fused disconnecting means been installed? 690.15/240.40
- If supply side:
  - is the AC disconnect listed as suitable for use as service equipment?
    230.82(6)
  - o is the PV system equipped with surge protection? 230.67
- Are the isolating devices or equipment disconnecting means installed in circuits connected to equipment at a location within the equipment, or within sight and 10 feet of the equipment? (where maximum circuit current is >30 amperes an equipment disconnecting means shall be provided for isolation) 690.15
- Are PV source or output circuits
  - > 30 volts in a raceway, guarded and readily accessible? 690.31
  - o on or inside a building in a metal raceway and marked? 690.31
- Is the PV equipment permanently identified/marked as required by code? (See attached label guide)
- Please verify any/all wiring meets applicable current NEC requirements

#### **Utility Interconnection**

- Has a plaque or directory been installed at each disconnecting means (capable of interconnection) denoting all electric power sources & power production sources? 705.10
- Has the point of connection to other sources been properly installed? 705.12
- Is the supply side AC disconnect readily accessible and within 10' of the connection point? 705.11
- Are the utility interactive inverters connected to the system through a dedicated circuit breaker or fusible disconnecting means? 705.12
- Does the bus or conductor ampacity comply as required? 705.12

Please refer to the MN State Department of Labor and Industry's website for additional information: Solar photovoltaic (PV) resources | Minnesota Department of Labor and Industry (mn.gov))

The above stated checklist is merely a guide and in no way supersedes code standards. Please refer to the currently adopted 2020 NEC code.